
Project Meeting III
26 October 2024

Ichiro Fujinaga
Music Technology Area, Schulich School of Music

M c G i l l U n i v e r s i t y

 LinkedMusic 2024 Project Meeting /47

In	Memory	of	Donald	“Don”	Byrd

3

 LinkedMusic 2024 Project Meeting /47

❖ Be	able	to	search	across	various	music	databases	from	one		website	

❖ Universal	Music	Instrument	Lexicon	(formerly	known	as	Virtual	Instrument	

Museum)	

❖ Create	a	crowd-sourced	website	

❖ Images	and	recordings	of	musical	instruments		

❖ Name	of	the	instrument	in	the	local	language	

❖ Basically	a	front-end	for	displaying	and	ediDng	musical	instrument	data	on	

Wikidata	

❖ Funded	for	7	years	(2022–2029):	$3.2M	

❖ SSHRC	Partnership	Grant	

❖ FRQSC	Research	Team	Support	Grant	

❖ McGill	University

LinkedMusic:	Key	Concepts

4

 LinkedMusic 2024 Project Meeting /47

❖ Jennifer	Bain	

(Dalhousie	University)	

❖ Houman	Behzadi	(McGill)	

❖ Julie	Cumming	(McGill)	

❖ Debra	Lacoste		

(Dalhousie	University)	

❖ Audrey	Laplante	

(Université	de	Montréal)	

❖ Cory	McKay	

(Marianopolis	College)	

❖ Laurent	Pugin	(RISM-Digital)	

LinkedMusic:	Co-Inves?gators	(7)

5

 LinkedMusic 2024 Project Meeting /47

❖ Rachelle	Chiasson-Taylor	

(Library	and	Archives	Canada)	

❖ Julia	Craig-McFeely	

(Oxford	University)	

❖ Jürgen	Diet	

(Bavarian	State	Library)	

❖ Robin	Desmeules	(McGIll)	

❖ Simon	Dixon	

(Queen	Mary,	University	of	London)	

❖ Jon	Dunn	(Indiana	University)	

❖ Andrew	Hankinson	(RISM	Digital)	

❖ Johannes	Kepper	

(University	of	Paderborn)	

❖ Kevin	Kishimoto		

(Stanford	University)	

❖ David	Lewis	

(Goldsmiths,	University	of	London)	

❖ Jonathan	Manton	(Yale	University)	

❖ Kevin	Page	(University	of	Oxford)	

❖ Alastair	Porter	(UPF	/	MetaBrainz)	

❖ Jenn	Riley	(McGill)	

❖ Patrick	Savage	(Keio	University)	

❖ David	Weigl	(University	of	Music	and	

Performing	Arts	Vienna)	

❖ Susan	Weiss	

(Johns	Hopkins	University)	

❖ Frans	Wiering	

(University	of	Utrecht)

LinkedMusic:	Collaborators	(18)

6

 LinkedMusic 2024 Project Meeting /47

❖ Bavarian	State	Library	

(Jürgen	Diet	/								

Bernhard	Lutz)	

❖ BriDsh	Library		

❖ Calcul	Québec	

❖ Dalhousie	University	

(Jennifer	Bain)	

❖ MetaBrainz	FoundaDon	

(Alastair	Porter)		

❖ RISM	Digital			

(Laurent	Pugin)	

❖ Université	de	Montréal		

(Audrey	Laplante)	

❖ University	of	Oxford	

(Julia	Craig-McFeely)	

❖ University	of	Waterloo	

(Debra	Lacoste)

LinkedMusic:	Partners	(9)

7

 LinkedMusic 2024 Project Meeting /47

❖ Barbara	Dobbs	McKenzie	(reDred)	(RILM:	Répertoire	

InternaDonal	de	Libérature	Musicale,	Tina	Frühauf)	

❖ Perry	Roland	(University	of	Virginia)	

❖ Rob	Sanderson	(Yale	University)	

❖ Xavier	Serra	(University	of	Pompeu	Fabra)

Advisory	Board	Members

8

 LinkedMusic 2024 Project Meeting /47

❖ Project	Manager	

❖ Vi-An	Tran	

❖ Postdoctoral	Fellows	

❖ Anna	de	Bakker	

❖ Junjun	Cao	

❖ Graduate	Students	

❖ Hanwen	Zhang	

❖ Kyrie	Bouressa	

❖ Kun	Fang	

❖ Lucas	March	

❖ Cole	Thierrin	

❖ Liam	Pond		

❖ Yu	Chia	Kuo	

❖ Undergraduate	Student	

❖ Yueqiao	Zhang	

❖ Researchers	

❖ Dylan	Hillerbrand		

❖ Geneviève	Gates-Panneton	

❖ Yinan	Zhou

People

9

 LinkedMusic 2024 Project Meeting /47

❖ 09:00–09:30	IntroducDons	(Ichiro	Fujinaga)	

❖ 09:30–10:30	Keynote	Talk:	Sustaining	Digital	Musicology	(Jennifer	Bain)	

❖ 10:30–11:00	Coffee	Break	

❖ 11:00–11:15	Cantus	UlDmus	(Dylan	Hillerbrand)	

❖ 11:15–11:30	Reports	from	Commibees	

❖ 11:30–12:00	Update	on	the	Feast	Days	Project	(Anna	de	Bakker)	

❖ 12:00–12:30	Overview	on	building	our	Data	lake	(Ichiro	Fujinaga)	

❖ 12:30–13:30	Lunch	(provided)	

❖ 13:30–15:00	Update	on	current	projects:	

❖ Cantus	Database	(Lucas	March)	

❖ Liber	Usualis	(Cole	Thierrin)	

❖ Rodan	(Hanwen	Zhang)	

❖ UMIL	(Universal	Musical	Instrument	Lexicon)	(Kun	Fang)	

❖ Neon	(Yinan	Zhou)	

❖ MS	73	(Kyrie	Bouressa)	

❖ Annote	(Kevin	Page)	

❖ 15:00–15:30	Coffee	Break	

❖ 15:30–16:00	Wikidata	ReconciliaDons	(Yueqiao	Zhang)	

❖ 16:00–16:45	Natural	Language	Query	to	SPARQL	(Junjun	Cao)	

❖ 16:45–17:00	Discussions	

❖ 19:00	Dinner	at	Kim	Fung	(1111	Rue	Saint-Urbain,	2nd	floor)

Agenda	for	Today

10

Dalhousie 2024 Fujinaga /31

Par?cipants:	Julia	Craig-McFeely,	Andrew	Hankinson,	Alessandra	IgnesD,	Jürgen	Diet,	David	Weigl,	Jennifer	Bain,	

Martha	Thomae,	Anna	de	Bakker,	Taz	Scob-Talib,	Jon	Dunn,	Wayne	Lin,	Audrey	Laplante,	Alastair	Porter,	Debra	Lacoste,	

Hanwen	Zhang,	Jenn	Reily,	Kyrie	Bouressa,	Jacob	deGroot-Maggen,	Yinan	Zhou,	Cory	McKay,		Lucas	March,	Van	Pham,	

Laurent	Pugin,	Marisa	Goldman,	Rebecca	Mizrahi,	Bernhard	Lutz,	Julie	Cumming,	Susan	Forscher	Weiss,	Dylan	

Hillerbrand,	David	Lewis,	Houman	Behzadi,	Kevin	Kishimoto,	Jon	Manton,	Robin	Desmeules

LinkedMusic	Project	Mee?ng	II	
21	October	2023:	McGill	University,	Montreal

11

 LinkedMusic 2024 Project Meeting /47

❖ Guest	speaker:	Jan	Hajič	

❖ Par?cipants:	Jennifer	Bain	(host),	Debra	Lacoste,	Andrew	Hankinson,	Anna	de	
Bakker,	Dylan	Hillerbrand,	Julia	Craig-McFeely,	Tim	Expert,	Houman	Behzadi,	Lucero	

Enríquez	Rubio,	Julie	Cumming,	Lionel	Li-Xing	Hong,Phoebe	Durand-McConnell,	

Marcia	Ostashewski

LinkedMusic	Workshop	IV	
7	April:	Dalhousie	University

12

 LinkedMusic 2024 Project Meeting /47

❖ Guest	speaker:	Ichiro	Fujinaga	

❖ Par?cipants:	Elsa	de	Luca,	(host),	Martha	Thomae,	Alessandra	IgnesD,	

Craig	Sapp,	Debra	Lacoste,	Jennifer	Bain,	Manuel	Pedro	Ferreira,	Francesco	

Orio,	João	Pedro	d’Alvarenga,	Antoine	Pham,	Hana	Vlhová-Wörner

LinkedMusic	Workshop	V	
24	June:	Lisbon,	Portugal

13

 LinkedMusic 2024 Project Meeting /47

LinkedMusic.ca

14

 LinkedMusic 2024 Project Meeting /47

❖ Training	and	Mentorship	Commibee	

❖ Chair:	Anna	de	Bakker	

❖ Jennifer	Bain	

❖ Laurent	Pugin	

❖ Hanwen	Zhang	

❖ Equity,	Diversity,	and	Inclusion	Commibee		

❖ Chair:	Julie	Cumming	

❖ Houman	Behzadi	

❖ Robin	Desmeules	

❖ Lucas	March	

❖ Knowledge	MobilizaDon	Commibee	

❖ Debra	Lacoste	

❖ Susan	Weiss	

❖ Julia	Craig-McFeely	

❖ Kyrie	Bouressa	

❖ Commibees	will	meet	at	least	twice	yearly

LinkedMusic	CommiYees

15

 LinkedMusic 2024 Project Meeting /47

❖Make	musical	informaDon	accessible	to	

more	people	in	the	world	

❖Make	musical	queries	available	in	

languages	other	than	English

Goals	of	LinkedMusic

16

 LinkedMusic 2024 Project Meeting /47

1. SIMSSA	DB	

2. Cantus	UlDmus	

3. Cantus	Database	

4. DIAMM		

5. RISM	

6. Cantus	Index	

7. Canadian	Chant	Database	

8. Global	Jukebox		

9. DTL1000	(Dig	That	Lick)	

10.MusicBrainz	

11. AcousDcBrainz	

12. CriDqueBrainz	

13. ListenBrainz	

14.MOTET	Database		

(Jennifer	Thomas)

Ini?al	14	Databases

17

15. TheSession.org

Cantus Ultimus and

Dylan Hillerbrand

Digital Distributed Music Archives and Libraries Lab

McGill University

LinkedMusic Project Meeting – 26 October 2024

Background

• Developed as part of Single Interface for Music Score Searching and
Analysis (SIMSSA) project

• An end-to-end optical music recognition (OMR) system for chant manuscripts

• Cantus Ultimus provides user interface to the results of OMR process
• Proof of concept web application for browsing and searching digitized and OMR-ed

manuscripts

2
Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting

– 26 October 2024

3 Data Sources

3

MEI results of OMR process

Images from host institutions

Cantus Ultimus

Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting
– 26 October 2024

Chant metadata from Cantus Database

4
Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting

– 26 October 2024

5
Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting

– 26 October 2024

Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting
– 26 October 2024

6

7
Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting

– 26 October 2024

Cantus Ultimus Today

• 13 manuscripts (~43,000 chants)
• 2 OMR-ed manuscripts

• Halifax (Canada), St. Mary’s University – Patrick Power Library (CDN-Hsmu)
M2149.L4 (“Salzinnes Antiphonal”)

• Einsiedeln, Kloster Einsiedeln – Musikbibliothek (CH-E) 611

• 1 virtual reconstruction
• Lambach Abbey, Gottschalk Antiphoner

Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting
– 26 October 2024

8

Cantus Ultimus Today

• Web application (cantus.simssa.ca)

• Debut as a “digital manuscript” kiosk
• “Centuries of Silence” exhibit at Musée des Arts anciens, Namur,

Belgium

Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting
– 26 October 2024

9

Cantus Ultimus & LinkedMusic

• Return of OMR-powered search

• Simplifying the Cantus Ultimus – Cantus Database connection

• Linking MEI-encoded images with Cantus Database metadata

Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting
– 26 October 2024

10

OMR Search

• Old version of Cantus Ultimus had OMR search…what
happened?

• New images

• MEI has errors

• MEI grew up (version 5 released)

• Proofread MEI now available:
• Salzinnes Antiphonal (CDN-Hsmu M2149.L4) MEI completed +

proofread

• Einsiedeln 611 (CH-E 611) completed

Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting
– 26 October 2024

11

Benefits of MEI-powered search

• Previous pitch search powered by volpiano

• MEI contains:
• Directly connected text and pitches

• Notation information
• Encodes attributes of neumes and neume component shapes (for example,

puncta and virga)

• Clef position

• Location in the image

Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting
– 26 October 2024

12

Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting
– 26 October 2024

13

Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting
– 26 October 2024

14

Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting
– 26 October 2024

15

Cantus Ultimus as a frontend to Cantus
Database

• Legacy proof of concept designed for a single import of a
portion of Cantus Database. Cantus Ultimus misses out on:

• Improvement in Cantus Database, like new fields

• Thousands of records created or edited in the past year

• Cantus Ultimus as:
• Repository of MEI

• Record the link between images and folios

• Search engine

Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting
– 26 October 2024

16

Cantus Ultimus as a frontend to Cantus
Database

• Simplify (or remove?) the Cantus Ultimus database

• Improve storage of MEI

• Index data directly from Cantus Database
• Requires new developments on Cantus Database

Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting
– 26 October 2024

17

Linking MEI and Chant Metadata

• MEI search and chant metadata search are siloed
• MEI encodes the contents of a page, system, and syllable

• Chant metadata (in Cantus Database) has information on the chant

• “Show me staff where the word ‘caeli’ exists in a chant for
Advent and is sung on a up-down contoured neume (torculus)
followed by a two-note repeated neume (distropha)?”

Cantus Ultimus & LinkedMusic – LinkedMusic Project Meeting
– 26 October 2024

18

Thank you

Dylan Hillerbrand

dylan.hillerbrand@mail.mcgill.ca

Anna de Bakker, LinkedMusic Project Meeting, 26 October 2024

Update on Feast Days Project
or: “Encoding Time Matters”

the general idea:

associating music with a recurring point in time

-In Cantus Database these are called “Feasts”

2

“Caecilae”=Feast of Saint Cecilia, 22 November

3

the general idea:

associating music with a recurring point in time

-In Cantus Database these are called “Feasts”

“Joannis
Baptistae”=Feast of
John the Baptist, 24
June

the general idea:

associating music with a recurring point in time

-In Cantus Database these are called “Feasts”

-controlled vocabulary allows comparison across sources

4

Music for saints’s days: not just chant…

5

https://fragmentarium.ms/view/page/F-mcnm/5111/48771/0

Legal text (arrests and summons in

Paris, June 1295 (?)

‘maredi Jour S.Pierre. Nichil.’

‘Juedi j. apres la s.pierre.’

Saints on the calendar: not just in churches…

6

=Tuesday, Feast of Saint Peter (June 29)

=Thursday, Day after Feast of Saint Peter (June 30)

ORLD
OMINATION

7

types of feasts in Cantus Database

-Sanctorale (~900 items)

-Temporale (~400 items)

-Everything else (~300 items)

8

-Sanctorale (~900 items)

-Temporale (~400 items)

-Everything else (~300 items)

types of feasts in Cantus Database

-feasts commemorating a holy figure
(saint)

-usually on the anniversary of their
death

S
a

in
t

R
e

m
ig

iu
s
 b

a
p

ti
z
e

s
 C

lo
v
is

,
b
y
 t

h
e

 M
a

s
te

r
o

f
S

a
in

t
G

ill
e

s
 c

.
1

5
0

0
.
N

a
ti
o

n
a

l
G

a
lle

ry
,

D
C

e.g. Remigius: died 13 January 533 CE

9

types of feasts in Cantus Database

-Sanctorale (~900 items)

-Temporale (~400 items)

-Everything else (~300 items)

types of feasts in Cantus Database

-feasts commemorating a holy figure
(saint)

-usually on the anniversary of their
death

B
n

F
 N

A
F

 1
6

2
5

1
,

f.
 8

4
v

e.g. St. Piatus: October 1 (ca. 286 CE?)

10

types of feasts in Cantus Database

-feasts whose date is
calculated by reference to
Christmas or Easter

-Sanctorale (~900 items)

-Temporale (~400 items)

-Everything else (~300 items)

-usually a day of the week +
number of weeks from
reference point

11

types of feasts in Cantus Database

-Sanctorale (~900 items)

-Temporale (~400 items)

-Everything else (~300 items)

12

types of feasts in Cantus Database

-Sanctorale (~900 items)

-Temporale (~400 items)

-Everything else (~300 items)
Often describing a ritual action or
category, not a date

13

Temporale:
partially extant on
Wikidata already

14

Temporale:
partially extant on
Wikidata already

…though not always without issues…

15

-Sanctorale (~900 items)

-Temporale (~400 items)

-Everything else (~300 items)

types of feasts in Cantus Database

The problem is now easier…right?

16

What does WikiData have already?

-“feast day” property—but this applies to people,
not points in time

17

What does WikiData have already?

-surprising number of “Slavic folk holiday”

-some national holidays

-no link to the saints

18

What does WikiData have already?

-particular local practices…

-not always with date or saint linked

(“made of”= wood

“height” = 170 cm tall)19

Saint Cecilia: the trial entry

https://www.wikidata.org/wiki/Q118849459

“Day in year for periodic occurrence” 22 November

“Commemorates”/“Named after” Saint Cecilia

“Instance of”

holiday, Christian holy day, religious and
cultural festive day

Reference statements as applicable

20

Saint Cecilia: the trial entry

-Can now be used to talk about music!

21

complications

-some saints have multiple associated feasts!

-sometimes commemorate life
events, e.g. “day they became a
bishop”

-sometimes commemorate events after death!

Remigius: re-buried in the abbey
church of Saint-Rémy, Reims

1 October 1099

22

complications

-some saints have multiple associated feasts!

-sometimes commemorate life
events, e.g. “day they became a
bishop”

-sometimes commemorate events after death!

-sometimes feasts have multiple associated saints

-sometimes the feast defines a period around it

-e.g. “Sunday after the feast of Remigius”

23

the breakdown

of ~900 “saints’ days” in Cantus Database:

-55 commemorate “life events”

-90 commemorate “after death events”

-102 commemorate groups of saints

-163 are part of a mini-holiday season

this leaves ~500 “simple” saints days

24

Reconciling the “simple” saints

25

Reconciling the “simple” saints

-found all but 15 saints (eventually)

-8 of these were incompletely defined in Cantus

26

Reconciling the “simple” saints

Saints could
now be made
into feasts!

27

Reconciling the “simple” saints

Saints could
now be made
into feasts!

ongoing:

-secondary
feasts related to
one saint or
saints’ day28

last to be solved: multiple saints

29

last to be solved: multiple saints

October 1: Saint Remigius

30

last to be solved: multiple saints

October 1: Feast of Saint Remigius

…and Saint Germanus…

31

last to be solved: multiple saints

October 1: Feast of Saint Remigius

…sometimes “Germanus
AND Remigius”

32

last to be solved: multiple saints

October 1: Feast of Saint Remigius

…Vedastus
might be there
too…

33

last to be solved: multiple saints

…and don’t forget Piatus!

34

last to be solved: multiple saints

and Germanus, Vedastus, Piatus, and others…

October 1: Feast of Saint Remigius

Should every combination be a different QID?

35

last to be solved: multiple saints

and Germanus, Vedastus, Piatus, and others…

October 1: Feast of Saint Remigius

Should every combination be a different QID?

36

summary:

of ~900 “saints days” in Cantus Database:

~500 “simple” saints days now on WikiData

-work in progress on days defined by saints days (e.g. day
before/Sunday after)

-solution will be similar for the ~500 Temporale feasts as
well

-to do: secondary feasts (~145 items)

-to do: groups of saints (~100 items)

37

Dalhousie 2024 Fujinaga /31

❖ Lazy	Learning	vs	Greedy	Learning	

❖ Lazy	learning:	k-nearest	neighbour		

❖ Greedy	learning:	arDficial	neural	networks	

❖ HarvesDng	vs	Federated	Search	

❖ HarvesDng	search:	Google	

❖ Harvested	data	is	indexed	

❖ Federated	search:	Kayak,	Google	Flights,	Expedia		

❖ Needs	APIs	(ApplicaDon	Programming	Interface)	on	the	client	side	

(e.g.,	airlines	and	hotels)	

❖ Lazy	searching:	HarvesDng	without	indexing

“Lazy	Searching”

19

Dalhousie 2024 Fujinaga /31

❖ Combine	various	sources	and	dump	them	into	our	

LinkedMusic	Data	Lake:	OpenLink	Virtuoso	

❖ Reconcile	schema	(properDes)	and	vocabularies	to	

Wikidata	using	OpenRefine	

❖ Use	SPARQL	and	other	search	engines	(e.g.,	Solr,	

ElasDcSearch)	for	queries

Current	Basic	Process

20

LinkedMusic Overall Process: Virtuoso Version

Search for All Types of Music Information from
SESEMMI website

…

…

…

Export to simple formats (CSV) but
in the original metadata schemas

SESEMMI: Search Engine System to Enhance Music Metadata Interoperability

Different Music Databases (14) with
incompatible metadata schemas

…

…

Universal Music Instrument Lexicon
(UMIL)

(provides vocabulary to Wikidata)

Once an item is found, the user is guided to the original database for detailed viewing

Openlink: Virtuoso

 LinkedMusic 2024 Project Meeting /47

Who	can	speak	English?		
Compared	to	websites

22

83%

17%

English
Others

14%2%
2%

3%3%
4%

4%
4% 5%

59%

English
Russian
Spanish
French
German
Japanese
Turkish
Persian
Chinese
Others

Can speak English Websites

 LinkedMusic 2024 Project Meeting /47

❖ Name	of	musical	instruments	may	be	needed	for	query		

❖ Music	instrument	names	varies	across	languages	and	

cultures	

❖ A	way	to	translate	musical	instrument	names	in	as	many	

language	as	possible	

❖ User-friendly	interface	to	populate	musical	instruments	in	

Wikidata

UMIL	(Universal	Musical	Instrument	Lexicon)		
Formerly	known	as	VIM	(Virtual	Instrument	Museum)

23

 LinkedMusic 2024 Project Meeting /47

VIM	(Virtual	Instrument	Museum)	

24

 LinkedMusic 2024 Project Meeting /47

❖ Linked	Data	

❖ SemanDc	Web	

❖ Ontologies	

❖ RDF	

❖ SPARQL	

❖ Wikidata	

❖ OpenRefine

Overview	of	technologies	used	in	LinkedMusic

25

 LinkedMusic 2024 Project Meeting /47

❖ Improve	the	quality	of	musical	informaDon	in	Wikidata	

❖ Provide	interfaces	for	ediDng,	e.g.,	UMIL,	Saints’	Days	

❖ Provide	visualizaDon	interfaces	to	idenDfy	missing	or	

erroneous	data	(e.g.,	“Transposing	Instrument”)

A	new	task	for	LinkedMusic	Project

26

 LinkedMusic 2024 Project Meeting /47

❖ Combine	various	data	sources	and	dump	them	into	our	

LinkedMusic	Data	Lake	

❖ Use	SPARQL	and	other	search	engines	(e.g.,	Solr,	

ElasDcSearch)	for	queries

Current	Basic	Process	of	Making		
LinkedMusic	Data	Lake

27

 LinkedMusic 2024 Project Meeting /47

❖ Natural	Language	Query	to	SPARQL	query	conversion	

❖ SPARQL:	SPARQL	Protocol	and	RDF	Query	Language	

NLQ2SPARQL

28

 LinkedMusic 2024 Project Meeting /47

❖ Ground	up	

❖ Fine	Tuning	

❖ In-Context	Learning	(“In-Context	EducaDon”)	

❖ RAGs	retrieval	augmented	generaDon

How	to	Train	Your	Computer

29

 LinkedMusic 2024 Project Meeting /47

How	to	Train	Your	Computer

30

A	Brief	History	of	Machine	Learning

 LinkedMusic 2024 Project Meeting /47

On	November	30,	2022	
OpenAI	announces	ChatGPT	!

31

 LinkedMusic 2024 Project Meeting /47

❖ ChatGPT	is	a	type	of	Large	Language	Model	(LLM)	

❖ Designed	specifically	for	conversaDon	by	OpenAI

What	is	ChatGPT?

32

 LinkedMusic 2024 Project Meeting /47

What	is	a	Large	Language	Model	(LLM)?

33

❖ A	type	of	arDficial	neural	networks	called	transformers	

❖ IniDally	trained	for	language	understanding	using	deep	

learning	techniques	

❖ LLMs	are	pre-trained	on	massive	datasets:	text,	images,	

music	

❖ They	have	generaDve	capabiliDes:	text,	images,	music	

❖ GPT	stands	for	GeneraDve	Pre-trained	Transformer

 LinkedMusic 2024 Project Meeting /47

History	of	Large	Language	Models	(LLM)

34

Date Google OpenAI

2017 Transformer paper

2018 BERT GPT

2019 T5 GPT-2

2020 GPT-3

2021 LaMDA

2022 PaLM ChatGPT (Nov)

2023 Bard (Mar) GPT-4 (May)

2024 Gemini (Feb) GPT-4o (May)

Date Facebook Anthropic

2023-02 LLaMA

2023-03 Claude

2023-07 LLaMA 2 Claude 2

2024-03 Claude 3

2024-04 LLaMA 3

2024-06 Claude 3.5
Sonnet

2024-07 LLaMA 3.2

2024-09 LLaMA 3.3

 LinkedMusic 2024 Project Meeting /47

❖ Size	

❖ Training	data	

❖ Model	size	

❖ Time	

❖ Training	Dme	

❖ Cost	

❖ CompuDng	Dme	

❖ Environment	impact

Issues	in	training	an	LLM

35

LLMs Size Training
time

Cost

ChatGPT 175B 34 days $4.6M

LLaMA 3 8B/70B 3/21 Days

LLaMA 3.1 405B 2 Months

GPT-4 1,760B 3–4 Months ~$500M

Gemini 1,560B ~$1–2B

 LinkedMusic 2024 Project Meeting /47

❖ Ground	up	

❖ Fine	Tuning	

❖ In-Context	Learning	(“In-Context	EducaDon”)	

❖ RAGs	retrieval	augmented	generaDon

How	to	Train	Your	Computer

36

 LinkedMusic 2024 Project Meeting /47

❖ A	type	of	transfer	learning	

❖ Start	with	a	pre-trained	model	

❖ Retrain	with	new	dataset	by	adjusDng	parameters	

❖ “Catastrophic	forgenng”	

❖ SDll	requires	some	compuDng	resources

How	to	Train	Your	Computer:	
Fine-tuning

37

 LinkedMusic 2024 Project Meeting /47

❖ Ground	up	

❖ Fine	Tuning	

❖ In-Context	Learning	(“In-Context	EducaDon”)	

❖ RAGs	retrieval	augmented	generaDon

How	to	Train	Your	Computer

38

 LinkedMusic 2024 Project Meeting /47

❖ Prompt	engineering	

❖ Provide	the	context	before	the	prompt	

		

❖ 	No	training	necessary!	!	

❖ Has	no	memory,	however	"	

❖ RestricDons	on	size	of	the	context	window	(token	limits)	

❖ ChatGPT:	2,000	words	

❖ ChatGPT	4o:	96,000	words	

❖ Claude	3.1	Sonnet:	150,000	words	

❖ Google	Gemini:	750,000	words

How	to	Train	Your	Computer:	
In-Context	Learning

39

I’m	preparing	a	slide	presenta2on	for	academics.
Please	make	some	slides	for	explaining	In-Context	Learning.

“In-Context	EducaDon”

 LinkedMusic 2024 Project Meeting /47

❖ Ground	up	

❖ Fine	Tuning	

❖ In-Context	Learning	(“In-Context	EducaDon”)	

❖ RAGs	retrieval	augmented	generaDon

How	to	Train	Your	Computer

40

✅

 LinkedMusic 2024 Project Meeting /47

❖ Combine	dynamic	search	with	LLM	

❖ Documents	or	other	data,	including	databases,	are	

retrieved	then	used	as	an	addiDonal	context	for	LLM	

prompt	

❖ User	preferences	can	also	be	retrieved	for	personalized	

response	

❖ Future	research	avenue	(e.g.,	Knowledge	Graph	

Embeddings)

How	to	Train	Your	Computer:	
RAG	(Retrieval	Augmented	Genera?on)

41

 LinkedMusic 2024 Project Meeting /47

❖ LLM	(ChatGPT)	is	used	for	NLQ2PARQL	with	in-context	

learning	

❖ Demo	by	Junjun	Cao	

❖ LinkedMusic	may	become	unnecessary	as	LLMs	improve	

over	the	next	few	years

LLMs	and	LinkedMusic

42

Dalhousie 2024 Fujinaga /31

❖ Google:	“17th-century	German	composers	who	died	in	London”	

❖ SPARQL:	“17th-century	German	composers	who	died	in	London”	

❖ ChatGPT3:	17th-century	German	composers	who	died	in	London	

❖ ChatGPT:	“Generate	SPARQL	for	Wikidata:	17th-century	German	

composers	who	died	in	London”	

❖ With	Handel:	Wikidata	(2023-10-21)	

❖ With	Handel:	Wikidata	(2024-06-29)	

❖ ChatGPT4o:	17th-century	German	composers	who	died	in	London	

❖ Claude:	17th-century	German	composers	who	died	in	London

	Comparing	queries:	Google	vs	SPARQL

43

Dalhousie 2024 Fujinaga /31

Screenshot	2024-10-01	
Claude	3.5	Sonnet

44

Project Meeting III 2024

Cantus Database
LinkedMusic Project Meeting – 2024/10/26

Debra Lacoste, Jennifer Bain, Ichiro Fujinaga, Anna de Bakker, Andrew Hankinson, Dylan Hillerbrand, Lucas March

Overview

• Ansible migration
• RISM
• Problem description and goals
• Model changes
• Institutions and Source identification
• Display changes
• Future work

2024-10-26 3

Ansible

• Deployment of CantusDB servers are managed by
ansible.

• Allows control of the state of VM’s hosting CDB
(“managed nodes”) from local machine (“control
node”) according to instructions contained in
“playbooks”.

• Allows you to easily replicate the state of VMs.

2024-10-26 4

What is RISM?

• RISM (Répertoire International des
Sources Musicales): Global
organization documenting musical
sources

• Purpose: Catalogs what musical
sources exist and where they’re
located

• Assigns an abbreviation, called a
library siglum, to institutions
worldwide that hold musical sources

2024-10-26 5

Goals

1. Standardize identification fields for clear distinctions among
siglum, title, and shelfmark

2. Align with RISM standards for compatibility and future
integration with external catalogs

3. Improve database model structure
4. Improve user experience with better filtering and sorting

2024-10-26 6

Old Source Naming Structure

Title: Composed of the city, archive, and shelfmark
Siglum: A combination of the institution’s siglum and shelfmark
RismSiglum: Points to a separate RismSiglum model, which is
intended to represent the institutional siglum (often referred to as
the “RISM” siglum)

2024-10-26 7

Old Source Naming Structure

• Problems:
• The RISM sigla used in both the source's siglum and the RismSiglum field

are often inaccurate.
• The fields siglum, RismSiglum, and title can be modified independently,

leading to inconsistencies.
• There is no linkage between sources in CantusDB and external catalogs

(e.g., RISM, the institution's own record).

2024-10-26 8

New Source Naming Structure

• Get rid of the RismSiglum table and associated fields -- they are not
accurate

• Create an Institution model that contains information (name, siglum,
city) on the institutions that hold our sources

• Create an InstitutionIdentifier model that contains various ID's for the
same institution.
• There might be multiple records in Instititution Identifier model that point to the

Bodleian (e.g., both BNF cb11930727f and RISM institutions/30001627

• Create a SourceIdentifier model: same as InstitutionIdentifier but at
the source-level.
• So that sources can be searched by old identifiers (e.g., “CDN-WatON D-0uhiz”)

2024-10-26 9

https://catalogue.bnf.fr/ark:/12148/cb11930727f
https://rism.online/institutions/30001627

Institution Model

• Where (RISM) siglum and institution name are now found
• Source identifier (shelfmark) replaces the former title and siglum

fields on the Source model

2024-10-26 10

Institution Identifier

• ID’s for various occurrences of the same institution in different
libraries

2024-10-26 11

Chant Project

• Chants can be tagged with the
Project if their inventories are
collected as part of a particular
project or initiative.

• Allows for the collection of
project-specific chant data.

• Enables filtering by project
during search.

2024-10-26 12

Printed Books vs. Manuscripts

• Confusion between the holding institution and the publisher for
printed books.

• Add a field (checkbox or dropdown) to identify whether a source is
a printed book or a manuscript.

• Rename “institution” to “holding institution” in the display to
clarify the source location.

2024-10-26 13

Source model changes

• New fields:
• source_completeness (replaces full_source

boolean):
• Complete source
• Fragment
• Reconstruction

• production_method (notes whether a source is
manuscript or printed)

• name (A colloquial or commonly-used name for the
source)

• Shelfmark is now a required field and gets a
default value of “[No Shelfmark].”

• Heading / short heading property is a “Cantus
Siglum” to display source information

2024-10-26 14

Private Collections / Virtual Reconstrucitons

• We don’t assign RISM sigla to privately owned fragments.
• Institution model has new fields that identify private collections

and collectors.
• is_private_collection
• is_private_collector

• Don’t assign RISM sigla to virtual reconstructions; instead, refer
to the reconstructed versions in the individual source
descriptions.

2024-10-26 15

Source Naming

• Heading / short heading property is a
“Cantus Siglum” to display source
information

• City → holdisnt.name → shelfmark
• If no holding institution: “Cantus” →

shelfmark
• Adds “(fragment)” to display when “is

a fragment” is checked in the
taxonomy

• Adds “name” for colloquial or
commonly used names

• Short Heading uses siglum

2024-10-26 16

Heading

Short heading

Source List

• Add “Country” and “City + Holding Institution” columns
• Columns for “country”, “city + institution”, and “source” are now

sortable on the source list page
• Filters for Country and Complete Source/Fragment available

2024-10-26 17

Optimization

• Feast Detail with raw SQL queries to improve performance
• Load time from 3+ seconds to 250ms
• Reducing the number of queries (from 1,500 to 8)
• Improving the display of chant genres

• Many other pages similarly optimized

2024-10-26 18

Future Work

• Prints vs. manuscripts
• Fixing institution names
• Create new institutions, only that exist in RISM
• Migrating previous identifiers
• Some other high priority issues:

• Set up log persistence
• CSV upload
• Proofreading changes

2024-10-26 19

Thank you!

2024-10-26 20

Universal Musical Instrument Lexicon

LinkedMusic Project Meeting

Kun Fang

2024/10 22

Overview

• Crowdsources
names and images
of instruments

• Focus on
multilingual
interface

• More convenient to
edit instruments on
Wikidata

2024/10 23

Why do we need UMIL?

• Addressing Issues with Wikidata

• Data Quality: Incomplete or inaccurate instrument data

• UMIL ensures cleaner, well-organized data through
community contributions.

• Convenience: lacks a user-friendly way to view/edit all
instrument information at once

• UMIL offers a centralized platform where users can easily
view, edit, and submit instrument data.

2024/10 24

Why do we need UMIL?

• UMIL’s Key Functions

• Crowdsourcing platform where users can contribute

• Contribute new instruments

• Submit instrument names in different languages

• Upload instrument images

• Interacts with Wikidata

• Get information from Wikidata

• Publish information to Wikidata

2024/10 25

Display Instruments in UMIL

2024/10 26

Hornbostel-Sachs
Classification
Faceted Search

Multi-languages

800+ Musical Instruments

Instrument Item: View Mode

2024/10 27

• Link to the Wikidata
page

Instrument Item: Edit Mode

2024/10 28

Logged-in users can edit
instrument information

• Add instrument names

• Add image (ongoing)

• Create new instruments (ongoing)

Add New Name: Edit Mode

2024/10 29

Add more
names at

once

Input fields: Language*, Name*,
Source*, Description, Alias

Check this box to publish to Wikidata

Add New Name: Language Supported

2024/10 30

• Choose a language in the
list (600+ languages)

• Identified by Wikidata’s
language code (e.g., “en”,
“fr”)

• Get the language list by
calling Wikidata API

Add New Name: Interact with Wikidata

• Where do we use the Wikidata API when adding new names?

• Get Wikidata’s latest language list

• Get/Set instrument information

• Name

• Description

• Alias

2024/10 31

Add New Image (Ongoing)

• Objective: Uploaded images will appear directly on the
instrument’s Wikidata page.

• How it works:

• Step 1: Upload image to Wikimedia Commons

• Wikimedia Commons is a free media repository
where images, videos, and audio are stored and
shared.

• Step 2: Retrieve the title of the uploaded image.

• Step 3: Link the image title to the instrument’s “image”
property (P18).

2024/10 32

Challenge 1: Make Edits to Wikidata

• Requires a Wikidata account of a specific type: Auto-confirmed user to
publish content.

• Solution
• Create a DDMAL account; Contributions made through UMIL will be published

using this account.

2024/10 33

Challenge 2: Upload Images to Wikimedia

• Copyright issues for uploading images.

• Solution
• Follow Wikimedia’s copyright policy by asking users to complete a questionnaire
• Review content before publishing

• Human review: Conducted by the UMIL team
• Automatic check tools: Further investigate existing mechanisms for

checking/filtering inappropriate content

2024/10 34

Call for better solutions!

Future Plans

• Fuzzy search: Improve musical instrument search for better user
experience.

• More faceted search: Allow users to filter instruments based on other
classification methods.

• Expand instrument database: More instruments and more languages.

2024/10 35

Thank you!

2024/10 36

Upgrading the

Liber Usualis
F. COLE THIERRIN

38

Background

 Collection of 11th century

Gregorian chants and hymns

 Online searchable copy of

the Liber Usualis:

https://liber.simssa.ca/

 Version used published in

1961

 Editorial decisions

 Liber Usualis was encoded

using MEI 2011

39

Challenges and Issues

40

MEI File Location 41

Neume

42

NamesTypes

Image

Size

Issues

43

OCR

Work

44

Status

Files all but converted*

“Lost” MEI files on Github

 Images resized, uploaded to Arbutus

45

Future: OCR error correction 46

Thank You

47

Neon:
What’s New?

LinkedMusic Project Meeting 2024

49

Yinan Zhou
DDMAL, McGill University
October 26th, 2024

What is Neon?

• Neume Editor Online
• Square notation editor

50

Where Neon Fits In

51

Optical Music
Recognition (OMR)

Music Encoding
Initiative

What Neon Does

• Web interface for graphically correcting OMR errors
• Applies changes directly to MEI
• Displays MEI-generated page above source page
• Extra information on MEI encoding (e.g., groups)

52

What Neon Does

• Web interface for graphically correcting OMR errors
• Applies changes directly to MEI
• Displays MEI-generated page above source page
• Extra information on MEI encoding (e.g., groups)

53

What Neon Does

• Web interface for graphically correcting OMR errors
• Applies changes directly to MEI
• Displays MEI-generated page above source page
• Extra information on MEI encoding (e.g., groups)

54

How Neon Works
1. Neon downloads the MEI and image files
2. Diva.js displays the images using IIIF
3. Verovio makes an SVG of the MEI
4. Neon coordinates and saves the results

55

History of Neon

The original Neon.js was started in 2011.
• Developed by Gregory Burlet and Alastair Porter
• Stable release in 2017
• Changes made on a server

56

57

Current Neon

Current Neon started in 2018 by Juliette Regimbal
• Uses tools that weren’t around in 2011
• Changes made in the browser

58

So what’s new since 2022?

59

Current Neon

• UI update in 2022
• Brain (Verovio) transplant in 2024

• Currently available in Neon staging

60

61

New Features

• New file system
• Support new glyphs, such as liquescent and divLine
• Clef and accidentals can be inserted into syllables
• Octave of a clef can be displaced up/down
• Introduce debug mode

62

New Features

• Heights of all the bounding boxes within a staff can be
matched with just one click

• Adjustable bounding box circle
• Support multiple columns
• New MEI files can be created from scratch

63

Q&A?

64

Rodan Updates

Hanwen Zhang
2024 Oct 26 Project Meeting

Rodan

1/5

https://rodan2.simssa.ca

• A web app that runs jobs for optical music recognition (OMR) and music analysis.
• Users can make, run, and share workflows on the website.
• A typical workflow can take scanned manuscripts as inputs and eventually output OMR results.
• Users can then upload pictures and OMR results to Neon to visualize and further analyze.

Summer 2023 Fall 2023 Winter 2024 Summer 2024 Fall 2024

V3.0.0 Develop

V3.0.0
Released 2023 Nov 30
Current production version

MEI Encoding
• No empty syllables in encoded MEI file
• Add an extra casting for MEI files to prevent from crashing
• Support multi-column folios in MEI encoding

01

UI Overhaul
• Ctrl + 0 to move the workflow to center of canvas
• Text does not overflow in resource assignment page
• New UI

02

Interactive Classifier
• Use arrow keys to navigate page or classifier glyphs
• Close the edit view when no glyphs are selected
• Hide classifier glyphs by default

03

Other Jobs
• New: Staff Distance
• Updated: Text Alignment, RGB(PNG), Gamera
• Functionality: Password reset, show error messages, etc.

04

2/5

3/5

Development

since V3.0.0
As of 2024 Oct 26
Current staging version

1. UI & frontend fix
2. Debugging

• Staff Finding
• Interactive Classifier
• Heuristic Pitch Finding
• Image Layer Separation (PACO) Training

3. Update dependency versions
4. New job

• Extract C Clef

4/5

Rodan Production Server

5/5

Main Instance

• 24 vCPUs and 2 GPUs
• 112 GiB instance RAM

• Tesla K80
• Driver version 460

GPU

Speed up
• Training

• 4 hours → 40 minutes
• Classifying

• 3 minutes → 12 seconds

Main Instance

• 8 vCPUs and 1 vGPU
• 40 GiB instance RAM
• Main jobs
• GPU jobs
• PostgreSQL database

Support Instance

• 16 vCPUs
• 16 GiB instance RAM
• PY3 jobs
• Rodan client
• Job scheduling
• Website service

Virtual GPU

• NVIDIA Grid V100D
• Driver version 550
• 16GiB GPU RAM

THANK YOU!

End-to-end with MS73
[CDN-Mrb 0073]

LinkedMusic Project Meeting III
McGill University, Montréal QC

Kyrie Bouressa

75

Rodan: Optical Music Recognition Workflow

MEI encoding of a manuscript 76Image: MS73.133v

RODAN!

MS 73
• A Dominican choirbook likely
produced in Northern Italy.
• Initially thought to have been
solely produced in the fifteenth-
century, though later research by
Alessandra Ignesti established the
manuscript to have also been
produced in the late thirteenth-
century into the early fourteenth-
century.
• 1275–1315; 1400s
• 10 distinct sections.

77

Rodan Phase 1
• Input an image
• Annotate sections of the

image
• No longer need to do the

whole thing!

MS73 fol.63
78

Layer 1

Layer 2
Layer 3

Rodan Phase 1
• Train a model based on these

images
• The model is trying to learn what

a neume, versus staff, versus
text, versus background is!

• Classifying looks at an image,
and tries to separate it into four
layers

▪ Music
▪ Staff
▪ Text
▪ Background

• Correct the output in Pixel
• Repeat

79

Music
layer

Text
layer

Staff
layer

Background
layer

Music Layer

Staff Layer

Text Layer

MS73 fol. 63 80

Model Mayhem I

• Initial approaches
was to make one
model
• Trained on pages

throughout the
manuscript

• Model should work on
random images from
anywhere in the
manuscript
• This did not happen

81

MS 73

“Whole” Model

Model Mayhem II
• Shrank our sample groups:

• “fol.200 model” did well
on 230 and 190 but terribly
on 170, etc.

• Models began to do
significantly better!
• … to a point; “leaving the

neighborhood”

• How wide can we go until they
stop working?
• Looking a little deeper…

82

MS 73

Initial approach

MS 73

83

Early Late

84

Middle Late

85

Late Late

Scribes, Editors,
Contributors I

86

1r 29v 38v 57r 62v 67v 127r

Divisio maxima

1r 93r 119v79r

C-clefs

13r 29v 47v 138r88v 101r

F-clefs

Scribes, editors, contributors II

87

1v

138r

36r125r

128r

122v15r

127r

16r

55v

55vCustodes
B-flats

Initials

Codicological Units
• Looking deeper revealed

distinct groupings and
similarities.

• Establish further rough
boundaries where significant
changes between paleography,
layout, and style.
• Some neighbors worked better

together than others: bigger
groups

• Trained regional models: early,
middle, late.

88

“Early” Model “Middle” Model “Late” Model

Phase 2: Neume-
level Classifying

Stage 1: Interactive (Manual)
Classifying
Music layers can now be separated
from text and staff—now what?
- Learning types of neumes
- Recognizing different versions of

the same neumes, clefs,
custodes

We do this manually to train the
classifier, until it begins sorting
neumes accurately.

89

MS73 65v

neume.virga
neume.podatus2b
neume.clivis
clef.c

Etc.

Phase 2: Neume-
level Classifying

Stage 2: Non-Interactive
(automatic) Classifying
Rodan can now sort neume
types even if they look a
little different from one
another
- Neumes are identified in

an MEI format
- Neume.virga

- Staff layer gets analysed
- Text transcript is applied

to the text layer
- An MEI file is produced 90

Neon!

• We have an image and an MEI file!

• Correct in Neon

MS73 65v 91

Thank you!

92

93

LinkedMusic
Yueqiao Zhang - McGill University

1

Self-Introduction
● McGill Undergrad
● Working in DDMAL for the past summer
● Enrolled in Computer Science Major and Music Applied to

Technology Minor

2

Project Overview
*This presentation will use two databases as examples: The
Session and MusicBrainz, since the workflow for them are the
most completed.

1. Retrieving data dumps
2. CSV and Reconciliation
3. CSV to RDF logic
4. Upload to our Virtuoso graph database

3

Retrieving Data

4

Retrieving Raw Data from The Session Database

● fetch_data.py
● There will be 6 available types of data in 6 separated

CSV files:
○ aliases.csv, recordings.csv, events.csv, sessions.csv, sets.csv,

tunes.csv
● Example on the next page

5

Details of the CSVs
● aliases: the alternative names for different Irish folk tunes
● recordings: various recordings made based on different Irish

folk tunes
● events: the events (e.g. festivals, concerts, etc) related to Irish

music and culture
● sessions: music sessions related to Irish music and culture
● sets: the playlists containing tunes made by public users
● tunes: the informations about different tunes

6

Example: events.csv

7

events.csv cont.
The raw events.csv contains its ID in the first column, followed by
all of its attributes.

8

find_artist.py
● A special CSV made specifically for recordings.csv
● Since the URLs for the artist are not in the data dumps but they

still appear on The Session website, we need the find_artist.py
script to retrieve those data.

9

Retrieving Raw Data from MusicBrainz
● fetch.py & untar.py
● The newest data will be downloaded and parsed into

separated JSON files: areas, artists, events, instruments, labels,
places, recordings, releases, release-groups, series, works,
genres

10

Brief Overview of Data Size

● release.json has
○ 12.94GB of pure text in JSON format
○ 1 char takes 1B
○ 1.3*(10^10) ~Ten billion characters

11

get_genre.py
● genre.json could only be retrieved by API calls
● get_genre.py is a specific script made for this.

12

Advantages for the Retrieving Scripts
1. Facilitate the following work by retrieving the data dumps to

local spaces
2. Avoid manual downloading
3. Easy updating

13

CSV and Reconciliation

14

Reconciliation

● Data Reconciliation:
○ This is the process of identifying and resolving

inconsistencies or discrepancies between different data
sources. (Wikipedia)

○ To allow cross-database querying, we use reconciliation in
our LinkedMusic project to link multiple databases together.

○ In our project, Reconciliation means matching the values to
Wikidata.

15

OpenRefine
● OpenRefine is a powerful

software for graph-editing.
● It has a built-in

Reconciliation function that
facilitates our researching
works.

16

DEMO
17

Why is Reconciliation beneficial?
1. Allow cross-database querying
2. Allow multi-language searching
3. Making the logic (relational schema) behind linked data

more complete.
4. More to explore…

18

Reconciliation for The Session Database
● Since the raw data is in CSV format, we can import it into

OpenRefine directly.
● Follow the step-by-step reconciliation guide in our GitHub

site
● More reconciliation steps and decisions should be applied

according to updates of The Session.

19

Example: events.csv

20

21

Reconciliation for MusicBrainz
● To convert from JSON file to CSV file, use convert_to_csv.py
● Similar to The Session Database, we need to further reconcile some

attributes for the CSVs. We import the CSVs into OpenRefine and
perform specific actions as shown in the demo.

● MusicBrainz’s main entities are already reconciled and they are
contained in the raw data dumps. We keep them during our
conversion process to facilitate our reconciliation steps.

22

Example: area.csv

23

Wikidata Entities Explanation

● Q-values:
○ Their URLs has the format http://www.wikidata.org/entity/Q16
○ Canada
○ They represent an “entity”

● P-values:
○ Their URLs has the format http://www.wikidata.org/prop/direct/P17
○ Country
○ They represent a “property”

24

Difficulties Encountered
1. Many very unpopular or detailed entities are not present in

Wikidata such as “event names”, “addresses”, etc. We need to enrich
Wikidata to solve this problem.

2. Some predicates are vague in their definitions. It becomes difficult
to determine which Wikidata properties to use. For example, P50 is
“author” and P175 is “performer”. An artist in MusicBrainz could be
either one of them. We had some trouble identifying properties
similar to these two.

25

CSV to RDF

26

What is RDF?

● Resource Description Framework is a standard model for
representing information on the web

● Triples : RDF data is built using "triples", which consist of
three parts: subject, predicate, and object.

● For example, an RDF triple might look like this: John
(Subject), has_age (predicate), 25 (object)
○ This represent that “John has age of 25.”

27

Application of RDF
URIs (Uniform Resource
Identifiers) :

RDF uses URIs to uniquely identify
resources (subjects, predicates, and
some objects). This allows data to be
linked and shared across different
datasets.

In our project, URIs are usually
represented by hyperlinks.

Linked Data :

RDF is central to the concept of
linked data, enabling datasets to
be connected by referencing
common resources via URIs. This
allows for richer data
relationships and more powerful
queries across databases.

28

RDF example

● Subject: https://thesession.org/events/3631
● Predicate: http://www.wikidata.org/prop/direct/P17

○ The Wikidata property for “country”
● Object: http://www.wikidata.org/entity/Q16

○ This is Wikidata URL to “Canada”

29

The Script
● csv2rdf_single_subject.py
● Two approaches to conversion:

○ Merge all CSV to one huge RDF:
■ Advantage: Only one command, easy workflow, easy update
■ Disadvantage: Large file might not upload to Virtuoso

○ One separate RDF file for each CSV:
■ Advantage: Smaller files, easy to correct if something went wrong, no error when

uploading
■ Disadvantage: Much more complicated workflow, difficult to update

● Mapping.json NEEDED!

30

Conversion Logic
1. In a row of CSV, we identify the first column of that row to be the

subject.
2. Each column after the first will represent a triple in RDF.
3. The header of the column is the predicate, the cell in that column x

row is the object.
4. The subject must be an entity type URI and the predicate must be

a property type URI. The object can be a Literal of any type or an
entity type URI.

31

Example conversion

32

mapping.json
● This file must include the JSON dictionary for all the predicates.

Run the script get_relations.py to retrieve a new JSON
mapping.json file for all input CSV.

● In the file that contains a dictionary, all column headers of all
input CSVs will be as the keys. The values starts to be empty, the
operator will have to fill in the correct Wikidata property URI
for all the corresponding header predicates.

33

Difficulties Encountered
- If multiple subject exists in one single CSV, the script is not

able to recognize it and cannot convert the data
corresponding to the correct schema. This issue is now
resolved by making separate CSVs. More efficient fixes will
involve further discussion.

34

Virtuoso

35

What is Virtuoso?
● Virtuoso is a multi-model database and application server, and it supports a

wide range of features, including
○ RDF Data Management
○ SPARQL Endpoint
○ Relational and Graph Database
○ Data Integration
○ Linked Data and Web Services

● For my project, uploading the final RDF for a database into Virtuoso is the
goal.

● After uploading several database onto Virtuoso, its SPARQL Endpoint feature
will allow cross-database search.

36

Virtuoso operation example

37

http://thesession/reconciled

http://musicbrainz/reconciled

Choose file to upload

Further Improvements

38

Further Improvements
1. Live and efficient data dump updates
2. More automatic and universal reconciliation process
3. Allow more complex relational schema, such as multiple subject

included in one CSV
4. More specific data type recognition

a. Such as automatic language detection, datetime format recognition,
coordinate location recognition, etc.

39

Thank You for Listening!
Yueqiao Zhang

40

Leveraging ChatGpt for Natural Language

Query to SPARQL on Virtuoso

--Using TheSession, Wikidata, MusicBrainz as example

Style norm:

1

Junjun Cao
Postdoctor of DDMAL

Email: junjun.cao@mail.mcgill.ca

• Section 1 TheSession Webpage Queries vs. Using SPARQL on Virtuoso

• Section 2 Queries Only Executable Using SPARQL on Virtuoso but not
on TheSession Webpage

• Section 3 Queries across TheSession and Wikidata

• Section 4 Queries across TheSession, MusicBrainz and Wikidata

2

TheSession Webpage Queries

vs. Using SPARQL on Virtuoso

3

The “session”: mostly informal gatherings at which people play Irish traditional music.

• Q1-1: Find all the sessions that took place in Greece

• Q1-2: Find the tunes of genre “jig,” in “D major,” having “Malcolm” in its name

• Q1-3: Find albums containing “Tola” in its name or its artist’s name

• Q1-4: Find albums related to “Mirella”

4

Searching on TheSession webpage (Q1-1) https://thesession.org/sessions

5

https://thesession.org/sessions

Prompting ChatGPT to generate SPARQL query (Q1-1)

SPARQL: SPARQL Protocol and RDF Query Language

Enter the following in ChatGPT (the text in red will be provided to users):

Given a database reconciled with Wikidata, knowing `?session a

<https://thesession.org/sessions>`, for question “Find the sessions that took place

(wdt:P17) in Greece”, please generate a SPARQL query. Don’t forget namespace.

6

Generated SPARQL by ChatGPT (Q1-1)

Find the sessions that took place in Greece

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?session

WHERE {

?session rdf:type <https://thesession.org/sessions> .

?session wdt:P17 wd:Q41 . # P17 is the 'country' property, and Q41 is the Wikidata

entity for Greece

}

In order for you to generate the following SPARQL, how should I ask you in a natural language (English)?

wdt:P17, country

7

Virtuoso SPARQL query interface (Q1-1)

8

Copy SPARQL code then Execute (Q1-1)

9

https://virtuoso.staging.simssa.ca/sparql

http://sample/thesession/reconciled

https://virtuoso.staging.simssa.ca/sparql

The result from Virtuoso (Q1-1)

10

This is why Linked Data is associated with
“Semantic Network”?

Comparison with The Session result (Q1-1)

11

Prompting ChatGPT to generate SPARQL query (Q1-1)
Using Ontology (OWL, Web Ontology Language) as a schema

Enter the following in ChatGPT (the text in red will be provided to users):

Given that the properties of an RDF database are reconciled with Wikidata,

and ```

@prefix wd: <http://www.wikidata.org/entity/> .

@prefix wdt: <http://www.wikidata.org/prop/direct/> .

<https://thesession.org/sessions> rdf:type owl:Class .

wdt:P2561 rdfs:label "name"; rdfs:domain <https://thesession.org/sessions> .

wdt:P17 rdfs:domain <https://thesession.org/sessions>.

```

Make sure to generate a correct SPARQL for the following question:

Find all the sessions that took place in Greece
12

Though it’s 
not rigorous 
to define me 

this way 



Generated SPARQL by ChatGPT (Q1-1)

Find all the sessions that took place in Greece

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT DISTINCT ?session ?name

WHERE {

?session rdf:type <https://thesession.org/sessions> ;

wdt:P17 wd:Q41 ;  # Assuming wd:Q41 is the Wikidata entity for Greece

wdt:P2561 ?name .

}

In order for you to generate the following SPARQL, how should I ask you in a natural language (English)?

wdt:P17, country

13



Searching on TheSession webpage (Q1-2) https://thesession.org/tunes

14

https://thesession.org/tunes


Prompting ChatGPT to generate SPARQL query (Q1-2)

Enter the following in ChatGPT (the text in red will be provided to users):

Given an RDF database reconciled with Wikidata, and
```

wd:Q170412 rdf:type owl:Class ; rdfs:label "tune" .

wdt:P136 rdfs:type owl:DatatypeProperty ; rdfs:label "genre" .

wdt:P826 rdfs:type owl:DatatypeProperty ; rdfs:comment "This property is also used
about the tonality of a tune etc" .

wdt:P2561 rdfs:label "name" .
```

Generate SPARQL for the following[Note: SPARQL be syntactically right such as 

`filter(contains(lcase(str(?x))`. For string values, please add @en ]:

Find the tunes of genre “jig”, in “D major”, having “Malcolm” in its name

15



Generated SPARQL by ChatGPT (Q1-2)
Find the tunes of genre “jig”, in “D major”, having “Malcolm” in its name

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?tune ?name

WHERE {

?tune rdf:type wd:Q170412 ;

wdt:P136 "jig"@en ;

wdt:P826 "D major"@en ;

wdt:P2561 ?name .

FILTER (CONTAINS(LCASE(STR(?name)), "malcolm")) }

In order for you to generate the following SPARQL, how should I ask you in a natural language (English)?

16



Copy SPARQL code then Execute (Q1-2)

17



The result from Virtuoso (Q1-2)

18



Comparison with The Session result (Q1-2)

19



Searching on TheSession webpage (Q1-3)

We may consider insert a simpler 

20



Prompting ChatGPT to generate SPARQL query (Q1-3)

Enter the following in ChatGPT (the text in red will be provided to users):

Given an RDF database partially reconciled with Wikidata, and:

wd:Q482994 a owl:Class . wdt:P175 a owl:DatatypeProperty .

wdt:P2561.

Generate SPARQL for the following question:

[Note: (1)The value of wdt:P175 is only rdf:literal instead of a URI, so it mustn’t be subject of other 
property.

(2)The subject of wdt:P2561 can only be instances of wd:Q482994.

(3)Use filter(contains(lcase(str(?x)). Any parts joined by UNION should be in {}.

(4)Don’t forget namespace]

Question: Find albums containing “Tola” in its name or its artist’s name

Why this query is complicated: 

wd:Q482994 album;
wdt:P175 performer

21



Generated SPARQL by ChatGPT (Q1-3)
Find albums containing “Tola” in its name or its artist’s name

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?album ?name ?artistName WHERE { {

    ?album rdf:type wd:Q482994 ;

           wdt:P2561 ?name . FILTER(contains(lcase(str(?name)), "tola"))

  } UNION {

    ?album rdf:type wd:Q482994 ;

           wdt:P175 ?artistName .

    FILTER(contains(lcase(str(?artistName)), "tola"))}}

In order for you to generate the following SPARQL, how should I ask you in a natural language (English)?

22



Copy SPARQL code then Execute (Q1-3)

23



The result from Virtuoso (Q1-3)

24



Comparison with The Session result (Q1-3)

25



Searching on TheSession webpage (Q1-4)

26



Prompting ChatGPT to generate SPARQL query (Q1-4)

Enter the following in ChatGPT (the text in red will be provided to users):

Given an RDF database partially reconciled with Wikidata, and:
```

wd:Q482994 rdf:type owl:Class .

ex:Shape a sh:NodeShape ; sh:targetClass wd:Q482994 ; sh:not [sh:property [

sh:path rdfs:label]].
```

Generate SPARQL for the following question:

[Caution: Use filter(contains(lcase(str(?x)); “related to” means some of one’s 

attributes contains “Mirella”]

Find albums related to “Mirella”

27



Generated SPARQL by ChatGPT (Q1-4)

Find albums related to “Mirella”

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT DISTINCT ?album ?attribute ?value WHERE {

    ?album rdf:type wd:Q482994 .

    ?album ?attribute ?value .

    FILTER (contains(lcase(str(?value)), "mirella")).

}

In order for you to generate the following SPARQL, how should I ask you in a natural language (English)?

28



Copy SPARQL code then Execute (Q1-4)

29



The result from Virtuoso (Q1-4)

30



Comparison with The Session result(Q1-4)

31



A comprehensive context for several questions (from Q1-1 to Q1-4)

• We can merge the different contexts into a single prompt for ChatGPT to generate 

SPARQL queries for various questions, such as those previously mentioned:

• Q1-1: Find all the sessions that took place in Greece

• Q1-2: Find the tunes of genre “jig,” in “D major,” having “Malcolm” in its name

• Q1-3: Find albums containing “Tola” in its name or its artist’s name

• Q1-4: Find albums related to “Mirella”

Find the Album containing “Mirella” in any of its attribute

32



The entire context for generating various SPARQL queries (Sec1)

Given that the entities of an RDF database are 

reconciled with Wikidata, and

``` @prefix wd: <http://www.wikidata.org/entity/> .

@prefix wdt: <http://www.wikidata.org/prop/direct/> .

@prefix thesession: <https://thesession.org/> .

thesession:sessions rdf:type owl:Class . wdt:P17

wdt:P136 a owl:DatatypeProperty ; rdfs:label "genre" .

wdt:P175 a owl:DatatypeProperty .

wdt:P826 a owl:DatatypeProperty ; rdfs:label "mode" ;

rdfs:comment "also used for the tonality of a tune" .

wdt:P2561 rdfs:label "name" .

rdfs:domain thesession:sessions .

wd:Q170412 a owl:Class ;

rdfs:label "tune" .

wd:Q482994 a owl:Class .

ex:Shape a sh:NodeShape ; sh:targetClass wd:Q482994 ; sh:not [sh:property [sh:path rdfs:label, wdt:P1476]].
``̀

Note:

1. In terms of SPARQL generation, it must be syntactically right such as:

(1) `filter(contains(lcase(str(?x))`--Don't forget str() function

(2) Any parts joined by `UNION` should be in {}

(3) All the namespace prefixes should be defined for each SPARQL

query

2. SPARQL generation should strictly adhere to the given context

associated with OWL or SHACL, etc.

For example, distinguish between ObjectProperty and DataProperty!

As above, pay attention: wdt:P136, wdt:P175 and wdt:P826 are

DataProperties! So, for example, the value of wdt:P175 are only strings

in our context!

3. “related to” means some of one’s attributes contains “Mirella”

Make sure to generate correct SPARQL for the following

4. For string values, please add @en

question:

33

2. Queries only Executable Using

SPARQL on Virtuoso but not on

TheSession Webpage

34

• Q2-1: Find a session named "Hurley’s Irish Pub"

• Q2-2: What genres appear in the recording whose artist is "Adam Agee & Jon

Sousa"?

• Q2-3: Find the session that took place within a 20-kilometer radius centered on

the session "Hurley’s Irish Pub"

• Q2-4: 找到在希腊的演奏会 (mandarin / Chinese, translated as “Find sessions in

Greece”)

35

Hurley’s Irish Pub
36

Prompting ChatGPT to generate SPARQL query (Q2-1)

Enter the following in ChatGPT (the text in red will be provided to users):

Given an RDF database with properties(wdt:P2561) reconciled with Wikidata,

generate SPARQL for the following (Use wdt:P2561 instead of rdfs:label. For string

values, please add @en):

Find a session named "Hurley’s Irish Pub"

37

Generated SPARQL by ChatGPT (Q2-1)
Find a session named "Hurley’s Irish Pub"

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT ?session

WHERE {

?session wdt:P2561 "Hurley's Irish Pub"@en .

}

In order for you to generate the following SPARQL, how should I ask you in a natural language (English)?

Subject predicate object

(property) (property value)

38

The result from Virtuoso (Q2-1)

39

https://thesession.org/sessions/411

https://thesession.org/sessions/411

Prompting ChatGPT to generate SPARQL query (Q2-2)

Enter the following in ChatGPT (the text in red will be provided to users):
Given an RDF database reconciled with Wikidata(such as Q482994)
and ```

@PREFIX thesession: <https://thesession.org/> .

wd:Q170412 rdfs:label “tune” .

wd:Q482994 rdfs:label “album” .

wd:Q483394 rdfs:label “genre” .

wdt:P175 rdf:type owl:DatatypeProperty . #even if it’s an

ObjectProperty in Wikidata, here we take is as DataProperty

thesession:tunes rdfs:domain wd:Q482994 ;

rdfs:range wd:Q170412 .

wdt:P136 rdfs:domain wd:Q170412 ;

rdfs:range wd:Q483394 . ```

Generate SPARQL for the following[note: No need to return

the label of an entity. For string property values, please add @en]:

What genres appear in the album whose artist is "Adam Agee & Jon Sousa"?

It’s involved with some reasoning based on the structure of the ontology: Find the genre related to the tune

wdt:P175 performer
wdt:P136 genre

wd:Q482994

wd:Q170412

wd:Q483394
thesession:tunes

40

Generated SPARQL by ChatGPT (Q2-2)
What genres appear in the album whose artist is "Adam Agee & Jon Sousa"?

PREFIX thesession: <https://thesession.org/>

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT DISTINCT ?genre

WHERE {

Match the album of the artist "Adam Agee & Jon Sousa"

?album wdt:P175 "Adam Agee & Jon Sousa"@en .

Find all tunes in the matched albums

?album thesession:tunes ?tune .

Find genres of the matched tunes

?tune wdt:P136 ?genre . }

In order for you to generate the following SPARQL, how should I ask you in a natural language (English)?

41

The result from Virtuoso (Q2-2)

42

Prompting ChatGPT to generate SPARQL query (Q2-3)

Enter the following in ChatGPT (the text in red will be provided to users):

Given an RDF database reconciled with Wikidata and

```

wdt:P625 rdfs:domain <https://thesession.org/sessions> .

wdt:P2561 rdfs:label “sessionName” ; rdfs:domain <https://thesession.org/sessions> .

```

Use bif:st_distance(). Remember to confine the type for entities .

Generate SPARQL for the following (For string property values, please add @en):

Find other sessions that took place within a 20-kilometer radius centered on the session "Hurley's

Irish Pub"

This prompt is not robust enough.

43

Generated SPARQL by ChatGPT (Q2-3)
Find other sessions that took place within a 20-kilometer radius centered on the session

"Hurley's Irish Pub"

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?session ?sessionName ?location ?distance

WHERE {

Find the location of "Hurley's Irish Pub"

?centerSession wdt:P2561 "Hurley's Irish Pub"@en ;

wdt:P625 ?centerLocation .

Find other sessions and their locations

?session a <https://thesession.org/sessions> ;

wdt:P2561 ?sessionName ;

wdt:P625 ?location .

Calculate distance between "Hurley's Irish Pub" and other sessions

BIND(bif:st_distance(?centerLocation, ?location) AS ?distance)

Filter sessions within a 20-kilometer radius

FILTER(?distance <= 20)} ORDER BY ?distance
44

The result from Virtuoso (Q2-3)

45

geographical coordinates

A similiar result from

TheSession

https://thesession.org/
sessions/411

46

https://thesession.org/sessions/411
https://thesession.org/sessions/411

Prompting ChatGPT to generate SPARQL query (Q2-4)

Enter the following in ChatGPT (the text in red will be provided to users):

Given an RDF database reconciled with Wikidata, and

```

@prefix wd: <http://www.wikidata.org/entity/> .

@prefix wdt: <http://www.wikidata.org/prop/direct/> .

<https://thesession.org/sessions> a owl:Class .

wdt:P2561 rdfs:label "name"; 

rdfs:domain <https://thesession.org/sessions> .

wdt:P17 rdfs:domain <https://thesession.org/sessions>.

``` (use wdt:P2561 instead of rdfs:label)

Make sure to generate a correct SPARQL for the following question:

找到在希腊的演奏会 (mandarin / Chinese, translated as “Find sessions in Greece”)

47

Generated SPARQL by ChatGPT (Q2-4)

找到在希腊的演奏会 (mandarin / Chinese, translated as “Find sessions in

Greece”)

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?session ?name

WHERE {

?session a <https://thesession.org/sessions> ;

wdt:P17 wd:Q41 ; # Q41 is the Wikidata entity ID for Greece

wdt:P2561 ?name .

}

48

Comparison with The Session result (Q2-4)

49

A comprehensive context for several questions (from Q2-1 to Q2-4)

• We can merge the different contexts into a single prompt for ChatGPT to generate

SPARQL queries for various questions, such as those previously mentioned:

• Q2-1: Find a session named "Hurley’s Irish Pub"

• Q2-2: What genres appear in the recording whose artist is "Adam Agee & Jon Sousa"?

• Q2-3: Find the session that took place within a 20-kilometer radius centered on the session

"Hurley’s Irish Pub"

• Q2-4: 找到在希腊的演奏会 (mandarin / Chinese, translated as Find sessions in Greece)

50

The entire context for generating various SPARQL queries (Sec2)

Given an RDF database with properties reconciled with Wikidata, and

@PREFIX thesession: <https://thesession.org/> .

@PREFIX wd: <http://www.wikidata.org/entity/> .

@PREFIX wdt: <http://www.wikidata.org/prop/direct/> .

thesession:sessions a owl:Class .

thesession:tunes rdfs:domain wd:Q482994 ;

rdfs:range wd:Q170412 ;

rdfs:comment "For albums have tunes" .

wd:Q170412 rdfs:label “tune” .

wd:Q482994 rdfs:label “album” .

wd:Q483394 rdfs:label “genre” .

wdt:P17 rdfs:domain thesession:sessions .

wdt:P175 rdf:type owl:DatatypeProperty .

wdt:P136 rdfs:domain wd:Q170412 ;

rdfs:range wd:Q483394 .

wdt:P625 rdfs:domain thesession:sessions .

wdt:P2561 rdfs:label “sessionName” ; rdfs:domain thesession:sessions .

Before generating SPARQL, note: 1. No need to return the label of

an entity

2. Use bif:st_distance(), the unit in which is kilometer and bif: is

not a namespace prefix

3. Remember to confine the type for entities

4. Don't forget the namespace prefix for each SPARQL query!!

5. Don't use property that's not provided above

6 .Albums don't relate genres directly, but Albums have tunes

which relate genres

7. Even if wdt:P175 is an ObjectProperty in Wikidata, here we take

is as DataProperty

8. For string property values, please add @en

Generate correct SPARQL for the following question:

51

3. Queries across TheSession and
Wikidata

Some information is not available solely through TheSession. Given that we have already done reconciliation
with Wikidata, we can extend our query to external data sources (e.g., Wikidata) for more specific questions
such as...

52

• Q3-1: Which sessions took place in Eastern Europe?

• Q3-2: From TheSession, please find recordings by Altan, which were known to be

released between 2007 and 2012

• Q3-3: Find in TheSession performers who are Canadians. And find the recordings

they performed in TheSession

Q3-2: Query for a specific time period. Q3-3: Compound question
留意ChatGPT对同义词（synonyms）的敏感度. eg:published released

The information about the green part comes from Wikidata.

53

Prompting ChatGPT to generate SPARQL query (Q3-1)

Enter the following in ChatGPT (the text in red will be provided to users):

Given an RDF graph <http://sample/thesession/reconciled>, the properties and classes of instances are

reconciled with Wikidata as much as possible, so regarding SPARQL queries across different databases, we use

`graph <...>` and `service <...>`. and Given:

@prefix thesession: <https://thesession.org/>. thesession:sessions a owl:Class.

wdt:P17 rdfs:domain <https://thesession.org/sessions>.

wdt:P2561 rdfs:domain <https://thesession.org/sessions>.

--for graph <http://sample/thesession/reconciled>

wdt:P361 rdfs:domain <ex:country>. wd:Q27468 rdfs:label “Eastern Europe”.

--for service <https://query.wikidata.org/sparql>

Make sure to generate a correct SPARQL for the following question (Note: Use the properties or classes as

above primarily; traverse wikidata before local graph):

Which sessions took place in Eastern Europe?

wdt:P361 part of

54

Generated SPARQL by ChatGPT (Q3-1)
Which sessions took place in Eastern Europe?

PREFIX thesession: <https://thesession.org/>

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?session ?location WHERE {

SERVICE <https://query.wikidata.org/sparql> {

?location wdt:P361 wd:Q27468 . # Q27468 is the Wikidata item for Eastern Europe

}

GRAPH <http://sample/thesession/reconciled> {

?session wdt:P17 ?location .

?session a thesession:sessions . }}

Timeout when running the code on my localhost! But it’s result-generating on stagingVirtuoso

wdt:P361,
part of

wdt:P17,
country

55

https://www.wikidata.org/wiki/Property:P361

The result from Virtuoso (Q3-1)

Q36: Poland, Q159: Russia, Q184: Belarus, Q213: Czech Republic, Q219: Bulgaria

56

Prompting ChatGPT to generate SPARQL query (Q3-2)

Enter the following in ChatGPT (the text in red will be provided to users):

Given an RDF graph <http://sample/thesession/reconciled>, the properties and classes of instances are
reconciled with Wikidata as much as possible, so regarding SPARQL queries across different databases,
we use `graph <...>` and `service <...>`. and Given:

For graph <http://sample/thesession/reconciled> :

wd:Q482994 a owl:Class. wdt:P175 rdfs:domain wd:Q482994; a owl:DataProperty.

For service <https://query.wikidata.org/sparql> :

wdt:P577 rdfs:range xsd:dateTime.

Make sure to generate a correct SPARQL for the following question

(Note: Use the properties or classes as above primarily; Even if on Wikidata, wdt:P175 is an
ObjectProperty, we see it as a DataProperty here; Use such as `?sessionRecording wdt:P2888
?wikidataRecording .`; For string property values, please add @en):

From TheSession, please find recordings by Altan, which were known to be released between 2007 and
2012

57

Generated SPARQL by ChatGPT (Q3-2)
From TheSession, please find recordings by Altan, which were known to be released between

2007 and 2012

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?sessionRecording ?wikidataRecording ?releaseDate WHERE {

GRAPH <http://sample/thesession/reconciled> { ?sessionRecording a wd:Q482994 ;

wdt:P175 "Altan"@en .

?sessionRecording wdt:P2888 ?wikidataRecording .}

SERVICE <https://query.wikidata.org/sparql> { ?wikidataRecording wdt:P577 ?releaseDate .

FILTER (?releaseDate >= "2007-01-01T00:00:00Z"^^xsd:dateTime && ?releaseDate <= "2012-12-

31T23:59:59Z"^^xsd:dateTime) }}

It takes a bit longer for retrieval
58

The result from Virtuoso (Q3-2)

59

Prompting ChatGPT to generate SPARQL query (Q3-3-0)

Enter the following in ChatGPT (the text in red will be provided to users):

Given an RDF graph <http://sample/thesession/reconciled>, the properties and classes of instances

are reconciled with Wikidata as much as possible, so regarding SPARQL queries across different

databases, we use `graph <...>` and `service <...>`. and Given:

The value of wdt:P175 is performer

--for graph <http://sample/thesession/reconciled>

wdt:P27

--for service <https://query.wikidata.org/sparql>

Make sure to generate a correct SPARQL for the following question:

Find in TheSession performers who are Canadians ...

The information about nationality of performering artists is only available on Wikidata

wdt:P175 performer

wdt:P27 country of citizenship

60

Expected SPARQL (Q3-3-0)
Find in TheSession performers who are Canadians

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

PREFIX wd: <http://www.wikidata.org/entity/>

SELECT ?performer

WHERE {

GRAPH <http://sample/thesession/reconciled> {

?x a wd:Q482994 ;

wdt:P175 ?performer .

FILTER isIRI(?performer)

}

SERVICE <https://query.wikidata.org/sparql> {

?performer wdt:P27 wd:Q16

}}

It returns results slowly on my localhost, but sometimes caused timeout on staging Virtuoso
61

Prompting ChatGPT to generate SPARQL query (Q3-3)

Enter the following in ChatGPT (the text in red will be provided to users):

Given an RDF graph <http://sample/thesession/reconciled>, the properties and classes of instances
are reconciled with Wikidata as much as possible, so regarding SPARQL queries across different
databases, we use

(1) `graph <http://sample/thesession/reconciled>` with:

wd:Q482994 rdfs:label “recording”. wdt:P175 # the value of it can be either rdfs:Literal or URI

(2) `service <https://query.wikidata.org/sparql>` with:

wdt:P27

[Note: Use isIRI(?performer); Don’t use `rdfs:label` as a predicate in SPARQL anyway!]

Make sure to generate a correct SPARQL for the following question:

Find in TheSession performers who are Canadians. And find the recordings they performed in
TheSession

62

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT ?performer ?recording WHERE {

GRAPH <http://sample/thesession/reconciled> {

?recording wdt:P175 ?performer .

}

SERVICE <https://query.wikidata.org/sparql> {

?performer wdt:P27 wd:Q16 .

}

FILTER(isIRI(?performer)) }

Generated SPARQL by ChatGPT (Q3-3)
Find in TheSession performers who are Canadians. And find the recordings they
performed in TheSession

Note: It probably takes a long time to get the result from running the code on localhost; sometimes, it reports timeout.

Recently, there is timeout on staging
63

https://www.wikidata.org/wiki/Property:P27
https://www.wikidata.org/wiki/Q16

The result from Virtuoso (Q3-3)

64

http://www.wikidata.org/entity/Q725953
http://www.wikidata.org/entity/Q725953
https://thesession.org/recordings/5709

4. Queries across TheSession,
MusicBrainz and Wikidata

65

• Q4-1: How many / Which recording performers on TheSession (who) are not on

MusicBrainz?

• Q4-2: List top five most popular record labels used by musicians on TheSession?

• Q2-3: List all albums recorded by bands in TheSession, that was released in 2003

in America

Q3-2: Query with counting items (statistics). Q3-3: Query across 3 databases
66

Prompting ChatGPT to generate SPARQL query (Q4-1-1)

Enter the following in ChatGPT (the text in red will be provided to users):

Given RDF graphs <http://sample/thesession/reconciled> and <http://musicbrainz/reconciled>, the
properties and classes of instances are reconciled with Wikidata as much as possible,

so regarding SPARQL queries across different databases, we use

(1) `graph <http://sample/thesession/reconciled>` with:

wdt:P175 rdfs:range ex:performer.

(2) `graph <http://musicbrainz/reconciled>` with:

wdt:P2888 rdfs:range ex:performer.

[note: DISTINCT; The value of performer must be IRI, that should be embodied earlier in SPARQL,
please use FILTER isIRI()]

Make sure to generate a correct SPARQL for the following question:

How many recording performers on TheSession are not on MusicBrainz?

67

Generated SPARQL by ChatGPT (Q4-1-1)
How many recording performers on TheSession are not on MusicBrainz?

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT (COUNT(DISTINCT ?performer)

AS ?performerCount) WHERE {

GRAPH <http://sample/thesession/reconciled>

{?recording wdt:P175 ?performer .

FILTER isIRI(?performer)

}

FILTER NOT EXISTS {

GRAPH <http://musicbrainz/reconciled> {

?otherRecording wdt:P2888 ?performer .

FILTER isIRI(?performer)

}}}

Comments:This Q4

inspiration: If we haven’

of some entity such as performer. It would

be diffcult to express the context and

SPARQL to get the desired result: in this case,

we have to use wdt:P175 to

confine ?performer. In the former context,

we use a assumed “ex:performer”.

It is precisely because of this that I further

believe embedding the types for as many

entities as possible during the process of

reconciliation is valuable; moreover,

ontology is indeed valuable for SPARQL

retrieval and plays a crucial role in data

interoperability.

68

The result from Virtuoso (Q4-1-1)

Note: Why is the result such a small number? This is because only a small fraction of artists/performers from TheSession have
been reconciled with Wikidata

69

Prompting ChatGPT to generate SPARQL query (Q4-1-2)

Enter the following in ChatGPT (the text in red will be provided to users):

Given RDF graphs <http://sample/thesession/reconciled> and <http://musicbrainz/reconciled>, the
properties and classes of instances are reconciled with Wikidata as much as possible,

so regarding SPARQL queries across different databases, we use

(1) `graph <http://sample/thesession/reconciled>` with:

wdt:P175 rdfs:range ex:performer.

(2) `graph <http://musicbrainz/reconciled>` with:

wdt:P2888 rdfs:range ex:performer.

[note: DISTINCT; The value of ex:performer must be IRI, that should be embodied in SPARQL]

Make sure to generate a correct SPARQL for the following question:

Which recording performers on TheSession are not on MusicBrainz?

70

Generated SPARQL by ChatGPT (Q4-1-2)
Which recording performers on TheSession are not on MusicBrainz?

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT DISTINCT ?performer

WHERE {

GRAPH <http://sample/thesession/reconciled> {

?recording wdt:P175 ?performer .

}

MINUS {

GRAPH <http://musicbrainz/reconciled> {

?otherRecording wdt:P2888 ?performer .

}}

FILTER(isIRI(?performer)) }

71

The result from Virtuoso (Q4-1-2)

... 72

Prompting ChatGPT to generate SPARQL query (Q4-2)
Enter the following in ChatGPT (the text in red will be provided to users):

Given RDF graphs <http://sample/thesession/reconciled> and <http://musicbrainz/reconciled>, the properties
and classes of instances are reconciled with Wikidata as much as possible.

1. For graph <http://sample/thesession/reconciled/noLangLabel>:

wd:Q482994 a owl:Class; rdfs:label “Record”. wdt:P2561 rdfs:label “name”.

2. For graph <http://musicbrainz/reconciled>

wd:Q3972943 a owl:Class; rdfs:label “Record”.

wdt:P1476 rdfs:label “title”; rdfs:domain wd:Q3972943.

wdt:P264 rdfs:label “record label”; rdfs:domain wd:Q3972943; rdfs:range wd:Q18127.

wdt:P2561 rdfs:domain wd:Q18127; rdfs:comment “It’s the name of ‘record label’. Don't use rdfs:label as a
predicate in the triple pattern of the generated SPARQL!”!!!

wd:Q18127 rdfs:label “Label”.

Make sure to generate an absolutely correct SPARQL for the following question

(Note: Primarily use the properties or classes mentioned above for each graph. You can use wdt:P2561 of
wd:Q482994 to match wdt:P1476 of wd:Q3972943. Return both the URI of the record labels and the name of
record labels):

List the top five most popular labels from MusicBrainz whose records are also on TheSession database

Given

List top five most popular record labels used by musicians on TheSession? ->deceptive, Modification:

73

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?labelURI ?labelName (COUNT(?record) AS ?recordCount) WHERE {

Records from TheSession

GRAPH <http://sample/thesession/reconciled/noLangLabel> { ?record a wd:Q482994.

?record wdt:P2561 ?recordName. }

Matching Records from MusicBrainz

GRAPH <http://musicbrainz/reconciled> { ?musicBrainzRecord a wd:Q3972943.

?musicBrainzRecord wdt:P1476 ?recordName.

Link records to their labels

?musicBrainzRecord wdt:P264 ?labelURI. ?labelURI a wd:Q18127. ?labelURI wdt:P2561 ?labelName. }}

GROUP BY ?labelURI ?labelName ORDER BY DESC(?recordCount) LIMIT 5

Generated SPARQL by ChatGPT (Q4-2)
List the top five most popular labels from MusicBrainz whose records are
also on TheSession database.

74

List top five most popular record labels

used by musicians on TheSession?

The result from Virtuoso (Q4-2)

75

Prompting ChatGPT to generate SPARQL query (Q4-3)

Q3972943: Release
Q482994: Album

P31:instance of

(Note: Use the properties or classes as above primarily)

76

album
release

Enter the following in ChatGPT (the text in red will be provided to users):

Given 2 RDF graphs, the properties, instances, classes of which are reconciled with Wikidata as much as possible, regarding
SPARQL queries across different databases, refer to:

wd:Q482994 owl:equivalentClass wd:Q3972943. The values of wdt:P175 have property wdt:P31 to indicate whether the
perfomer is a band.

1. For `GRAPH <http://sample/thesession/reconciled/noLangLabel>`:

wd:Q482994 a owl:Class; rdfs:label “Album”.

wdt:P175 rdfs:label “performer”; rdfs:domain wd:Q482994. wdt:P2561 rdfs:label “name”.

2. For `GRAPH <http://musicbrainz/reconciled>`:

wd:Q3972943 a owl:Class; rdfs:label “Release”.

wdt:P17 rdfs:label “country”. wdt:P585 rdfs:label “date”. wdt:P1476 rdfs:label “title”.

3. For `SERVICE <https://query.wikidata.org/sparql>`:

wd:Q215380 rdfs:label “bands”. wdt:P31

Make sure to generate a correct SPARQL for the following question[note: match value of P2561 and of P1476 in order to match

the instances of wd:Q482994 and of wd:Q3972943(Please use `FILTER(?date=2003)`in SPARQL)]:

List all albums recorded by bands in TheSession, that was released in 2003 in America

Generated SPARQL by ChatGPT (Q4-3)
List all albums recorded by bands in TheSession, that was released in 2003 in America

PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/>

SELECT ?albumName ?album ?performer

WHERE { GRAPH <http://sample/thesession/reconciled/noLangLabel> {

?album a wd:Q482994 ; #recording of TheSession

wdt:P2561 ?albumName ;

wdt:P175 ?performer . }

GRAPH <http://musicbrainz/reconciled> {

?release a wd:Q3972943 ;

wdt:P1476 ?releaseTitle ;

wdt:P17 wd:Q30 ; # USA

wdt:P585 ?date .

FILTER(?date = 2003)} FILTER(?albumName = ?releaseTitle)

SERVICE <https://query.wikidata.org/sparql> {

?performer wdt:P31 wd:Q215380 . }}
77

album

?albumName

?releaseTitle

release

Q30

2003

performer

Q215380
(Band)

wdt:P175

wdt:P31

wdt:P17

wdt:P585

Instance of

The result from Virtuoso (Q4-3)

78
https://thesession.org/recordings/245

https://thesession.org/recordings/245

Discussion or Issue

• Should we or how to understand the ontology?
• Ontology can be automatically generated during CSV2RDF in Virtuoso
• Understanding OWL (Web Ontology Language) isn’t essential right now
• It can be substantially seen as a graph structure, serving as a framework for the DB
• A familiarity of ontology will contribute to a more professional way of asking

questions. Refer to:
• Q1-1 “Find the sessions that took place in Greece.” (Interoperable)
• Q2-2 What genres appear in the album whose artist is "Adam Agee…"?
• Q4-2 List top 5 most popular record labels used by musicians on TheSession?

• Editing or visualization tools for ontology: (1) protégé (2)WebVOWL

• Issue: The accuracy of SPARQL generation
• What if there is a complex context (e.g., an oversized ontology)?

79

Not a “black box”

Am I a
schema?

Future Work

• Further reconciliation

• Knowing more about Wiki-Project Music
(https://www.wikidata.org/wiki/Wikidata:WikiProject_Music)

• E.g. “Find albums containing “Tola” in its name or its artist’s name” wdt:P175 performer

• Prompt engineering or In-context learning:
• Intelligent agents designing and RAGs

• E.g., ChatGPT can even read the visualization of OWL

• Knowledge-Reasoning, Recommendation, Visualization, Network
Analysis…

80

Q4-2 if … a lazy searcher, asking natural language queries in a …

Q4-3

https://www.wikidata.org/wiki/Wikidata:WikiProject_Music

Thank you!

81

Junjun Cao
Postdoctor of DDMAL

Email: junjun.cao@mail.mcgill.ca

 LinkedMusic 2024 Project Meeting /47

❖ Public	UMIL:	Crowd	sourcing		

❖ NLQ2SQL	for	Cantus	Database	(Lucas	March)	

❖ ConDnuous	IntegraDon	for	NLQ2SPARQL	

❖ Integrate	database	reconciliaDon	as	part	of	the	in-context	learning	

❖ InvesDgate	the	use	of	RAG	(Retrieval-Augmented	GeneraDon)	

for	queries	

❖ Use	LLMs	to	generate	frontend	(e.g.,	sortable	table)	

❖ ConDnue	to	update	Wikidata:	e.g.,	Saints	and	Feasts	

❖ How	to	keep	Wikidata	updated	and	correct

Future	projects

46

 LinkedMusic 2024 Project Meeting /47

❖ LinkedMusic	Workshops:		

❖ Music	Encoding	Conference	in	London,	UK	

❖ Monday	2	June	2025:	2	pm	

❖ IAML	in	Salzburg	

❖ Sunday	6	July	2025:	3	pm	

❖ Keynote	speaker	suggesDons	

❖ MIMO	

❖ DOREMUS	

❖ Mapping	Manuscript	MigraDons	

❖ CIMCIM

Future	Mee?ngs

47

 LinkedMusic 2024 Project Meeting /47

❖ 2026:	MEC	(Tokyo,	Japan)	

❖ 2026:	IAML	(Thessaloniki,	Greece)	

❖ 2027:	MLA	(TBA)	

❖ 2027:	IMS	Congress	(University	of	Stavanger,	Norway)

Possible	Future	Workshop	Sites

48

 LinkedMusic 2024 Project Meeting /47

Hanwen	Zhang	

Lucas	March	

Kyrie	Bouressa	

Anna	de	Bakker	

Cole	Thierrin	

Ichiro	Fujinaga	

Yueqiao	Zhang	

Dylan	Hillerbrand	

Yinan	Zhou	

Junjun	Cao	

Kun	Fang	

Geneviève	Gates-Panneton	(MIA)	

SIMSSA	/	LinkedMusic	Team	@McGill		
Summer	2024	

49

 LinkedMusic 2024 Project Meeting /4750

Acknowledgements

These	slides	were	created	with	the	assistants	from	ChatGPT,	Claude,	and	Gemini.

	Slide 1
	Slide 2: Cantus Database
	Slide 3: Overview
	Slide 4: Ansible
	Slide 5: What is RISM?
	Slide 6: Goals
	Slide 7: Old Source Naming Structure
	Slide 8: Old Source Naming Structure
	Slide 9: New Source Naming Structure
	Slide 10: Institution Model
	Slide 11: Institution Identifier
	Slide 12: Chant Project
	Slide 13: Printed Books vs. Manuscripts
	Slide 14: Source model changes
	Slide 15: Private Collections / Virtual Reconstrucitons
	Slide 16: Source Naming
	Slide 17: Source List
	Slide 18: Optimization
	Slide 19: Future Work
	Slide 20: Thank you!
	Slide 21
	Slide 22: Universal Musical Instrument Lexicon
	Slide 23: Overview
	Slide 24: Why do we need UMIL?
	Slide 25: Why do we need UMIL?
	Slide 26: Display Instruments in UMIL
	Slide 27: Instrument Item: View Mode
	Slide 28: Instrument Item: Edit Mode
	Slide 29: Add New Name: Edit Mode
	Slide 30: Add New Name: Language Supported
	Slide 31: Add New Name: Interact with Wikidata
	Slide 32: Add New Image (Ongoing)
	Slide 33: Challenge 1: Make Edits to Wikidata
	Slide 34: Challenge 2: Upload Images to Wikimedia
	Slide 35: Future Plans
	Slide 36: Thank you!
	Slide 37
	Slide 38: Upgrading the Liber Usualis
	Slide 39: Background
	Slide 40: Challenges and Issues
	Slide 41: MEI File Location
	Slide 42: Neume
	Slide 43: Image Size Issues
	Slide 44: OCR Work
	Slide 45: Status
	Slide 46: Future: OCR error correction
	Slide 47: Thank You
	Slide 48
	Slide 49: Neon: What’s New?
	Slide 50: What is Neon?
	Slide 51: Where Neon Fits In
	Slide 52: What Neon Does
	Slide 53: What Neon Does
	Slide 54: What Neon Does
	Slide 55: How Neon Works
	Slide 56: History of Neon
	Slide 57
	Slide 58: Current Neon
	Slide 59: So what’s new since 2022?
	Slide 60: Current Neon
	Slide 61
	Slide 62: New Features
	Slide 63: New Features
	Slide 64: Q&A?
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: End-to-end with MS73 [CDN-Mrb 0073]
	Slide 76: Rodan: Optical Music Recognition Workflow
	Slide 77: MS 73
	Slide 78: Rodan Phase 1
	Slide 79: Rodan Phase 1
	Slide 80
	Slide 81: Model Mayhem I
	Slide 82: Model Mayhem II
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Scribes, Editors, Contributors I
	Slide 87: Scribes, editors, contributors II
	Slide 88: Codicological Units
	Slide 89: Phase 2: Neume-level Classifying
	Slide 90: Phase 2: Neume-level Classifying
	Slide 91: Neon!
	Slide 92: Thank you!
	Slide 93

